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This presentation is an overview of a joint NASA Lewls-McDonnell Aircraft

Company Hot Gas Ingestion (HGI) test program in NASA Lewis' 9'x15' Low Speed
Wind Tunnel (LSWT). This initial program is scheduled for testing in late

1986.

Advanced short takeoff/vertical landing (ASTOVL) aircraft capable of oper-

ating from remote sites, damaged runways, figure l, aircraft carriers (figure

2) and small air capable ships are being pursued for deployment around the

turn of the century. To achieve this goal, it is important that technologies

critical to this unique class of aircraft be developed, ref. I. One of the

ASTOVL concepts, the vectored thrust, has as its critical technology item, the

potential of hot gas ingestion (which occurs during vertical flight operation
while in ground effect) as a key development issue. Recognizing this need,
NASA Lewis Powered Lift Section and McAir have defined a cooperative program

for testing in the Lewis' g'xl5' LSWT.

(Rex)

GROUND
ATTACK

/ _ ' STOVL4ooIt

, ziJ STOL

; CTOL " _._'_"_

,o oo In_!a[Ph.,ases

_15 After Runway
OfConflict

m

ueivory a e

Bombs/Hr . N
o I I .

IOONM 200NM 15OHM 40QNM

(AGARDCP313) Distance To Target
CO-B-I_

Figure 1.-STOVL improves Air Force operational effectiveness.
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NAVAL CARRIEROPERATION

CONVENTIONALBATCHOPERATION

LAND, ARRESTINGGEAR

STOVL
CONTINUOUS

OPERATION

LAND

Y
RELOCATE,REFUEL, REARM

Sortie Rate
1

TAKE-OFF,CATAPULT

STOVL

'////////i
r/l/Ill/Ill

Figure 2_ -' STOVL improves Naval carrier operational effectiveness.

is

An artist's conceptual view of the vectored thrust concept (Model

shown in figure 3. The aircraft concept consists of:

I. single engine;
2. bi-furicated inlet;

3. VTOGW 30,000 Ibs;
4. M Max. = ?.0;

5. Four nozzles - two forward and two aft

279-3)
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NASL 
C - 8 4 - 4 5 4 0  

Figure 3. - Model 2 7 9 - 3  wi th  improved L I D 8  and deflector. 

The two f r o n t  def lector  nozzles w i l l  be requi red t o  accommodate burn ing o f  the 
fan a i r f l ow .  The two a f t  d e f l e c t o r  nozzles w i l l  con t ro l  the core a i r f l o w .  
The concept may also have the fo l lowing:  

1. f r o n t  f low def lector ;  
2. sidewall def lectors  (streaks) 

The t e s t i n g  o f  t h i s  vectored t h r u s t  concept requi res a unique model sup- 
p o r t  system and modif icat ion t o  the 9 'x15'  LSWT t e s t  section. 

The next f igure ( 4 )  shows a schematic o f  the 9.2% scaled Model 279-3 i n -  
s t a l l e d  i n  the 9 ' x l 5 '  LSWT w i t h  the unique model support system The model 
support system provides fou r  degrees of freedom: V e r t i c a l  movement, yaw, 
p i t ch ,  and r o l l  capab i l i t i es .  The v e r t i c a l  movement range i s  f ou r  feet  above 
the ground plane; yaw angle range i s  + 1800; p i t c h  angle range i s  + 3O0, 
and the r o l l  angle i s  + 200 range. h o t h e r  feature shown i n  f i g u r e  4 i s  
the: Ground plane which-has a s l i d i n g  t r a p  door. 
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PITCH DRIVE

ROLL
DRIVE
SYSTEM-

N LINE
(MOVABLE)

YAW
DRIVE

MODEL H20

iiiiii

-MOVABLE
)T GAS LINES

SCREEN-

TO EXHAUST FAN
P

BOTTOM OFTUNNEL

Figure 4.-Schematic of model 279-3 and support system installed in the 9'X15' LSWT.

We have built in flexibility in this program. The aircraft inlet airflow is

controlled independently of the nozzle airflow. The inlet airflow is con-

trolled by a vacuum system and the nozzle airflow is supplied by a high pres

sure-hot air system, with temperature ranging from ambient to lO00OF at the

nozzles. The freestream velocity will vary from static to 65 kts.

Iota

U
Slots ---_

\

4---Open for venting / Ground Plane

Open for venting-----_

Tunnel Floor

Figure 5. - Modified 9'X15' Low Speed Wind Tunnel.
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A cross-section of the 9'x15' LSWT is shown in figure 5. The 9'x15' LSWT

has slotted sidewalls test section. The tunnel sidewalls will have an opening

near the ground plane to allow the laterally-flowing hot gas from the exhaust

nozzles to exit the test section.

THE PRIMARY OBJECTIVES oF THIS COOPERATIVE PROGRAM ARE

TO INVESTIGATE TECHNIQUES WHICH WILL:

O MINIMIZE/ELIMINATE HOT GAS REINGESTION DURING VERTICAL

FLIGHT OPERATIONS WHILE IN GROUND EFFECTS.

O PERMIT PREDICTION OF OPERATING CHARACTERISTICS OF

VECTORED THRUST CONCEPTS WITH FORWARD VELOCITY.

IN ADDITION, THE TEST PROGRAM WILL ESTABLISH A HIND

TUNNEL HOT GAS INGESTION DATA BASE FOR:

O BOTH NEAR/FAR FIELD INGESTION

O FOUNTAIN FLOW EFFECTS, AND

O GROUND VORTEX FLOW FIELD.

THE DATA BASE DEVELOPED SHALL BE APPLICABLE TO THE

DEVELOPMENT OF UNIQUE ANALYTICAL CODES.

Figure 6.-Primary objectives.

The program objectives are shown in figure 6. In addition to the primary

objectives, we shall establish a database in several needed areas, one of

which is the ground-vortex-flow-field-jet interaction. The objective is to
answer the question of what effect, if any, the boundary layer thickness has

on the ground-vortex-flow-field-jet interaction.

The figures which follow are used to indicate the type of data parameters
we will investigate. The trends shown on the figures are considered typical.

The results of the boundary-layer study, figure 7, will indicate the

Forward extent of the ground vortex flow field-jet interaction due to the

bo_ndary-I ayer thickness.
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qoa
V-

I

o. /J

+/i -
qN, x

Boundary-Layer Thickness

X/dN,

Figure 7.-Boundary-Layer thickness effect on the ground vortex flow.

Shown in figure 8 is a means of thickening the boundary-layer. Shown is a

boundary-layer thickness configuration which consists of I/4" dia. rods in

four rows. The rods would extend the width of the ground plane. Several

configurations could be utilized; for example, 3" height rods or 6" height

rods, to obtain several different boundary-layer heights.

0 0 o o

0 o o o o
0 0 0 0

0 0 0 0

undary-Layer Thickener Rods

o o 0

o o 0

o o 0 o

o 0 o

4_ Configuration A

Figure 8.-Boundary-Layer Thickeners.
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In addition to controlled thickening the boundary-layer, we also need to

minimize the boundary-layer height due to axial distance. Figure 9 showns two

methods of reducing the boundary-layer height. We have considered three tech-

niques; a rotating belt was considered but was eliminated due to complexity

and the temperature environment involved (lO00OF). As shown, another con-

cept involves using a suction pump(s), which is located outside of the test

section. The suction pump(s) would remove part or all of the boundary-layer.

The least concept involves lowering the front section of the ground plane.

This technique would relocate the initial boundary-layer growth point. Prior

to the use of either of these concepts, we shall have established the extent

of the ground vortex flow field on the ground plane.

Freestrsam Airflow

Ground Plane /

Freestream Airflow

,,. I _mall suction pump

located outside of test section.

"--. ?
_'_-- Ground Plane

Figure 9.-Boundary-layer removal configurations.

One mechanism for near field ingestion is the jet fountain. If the velo-

city of the fountain or turbulence intensity is reduced, the effects of the

near field ingestion will also be reduced. A means of reducing the fountain

velocity and turbulence is to vary the front nozzles splay (laterally movement

of the front nozzle) angle. It is anticipated that results will show a reduc-

tion in both fountain jet velocity and turbulence intensity with increasing

splay angle, as shown in figure lO.
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Velocity

Ratio
of Fountain

Jet

Front Nozzles

;rlIlj
/ / / / / /

Front Nozzle

Angle

0"

12'

Turbulence

Intensity

Front Nozzle
Splay Angle

O"

12 e

Distance from Centerline

Figure l O.-Fountain turbulence and velocity.

Figure II illustrates the various configurations we will test to obtain
the fountain flow characteristics. Shown is a schematic of four nozzle ar-

rangements and the auxiliary inlets. The first configuration is Model 279-3

concept with both sets of nozzles flowing. The second configuration consists
of only the front nozzles flowing. The third configuration consists of only

the aft nozzles flowing. And the fourth configuration simulates a twin engine

aircraft with one engine out. The jet temperature range is interchangable
between the front and aft nozzles. These configurations will produce consid-

erable information on the ground-vortex-boundary-layer-interaction.
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Auxiliary Inlet

I

0 0 0

[] []

r-1 nn

Nozzles: [

,-- Forward ---,

_-- Aft-_ [] D

Figure 11.-Model deflected jet configurations.

B

0

0

Addressing the primary objectives of this joint NASA Lewis-McAir program,
the major concern is hot gas ingestion in both the near and far field. In

determining the effectiveness of the ingestion avoidance devices (IADs) for
near field ingestion, the inlet temperature rise v.s. nozzle exhaust temper-

ature will be plotted as shown in figure 12. Results from the configuration

without IADs will be compared to a configuration with IADs. In general, a
reduction should occur with ingestion avoidance devices.

Inlet

Temperature Rise /
/

/
/

_-- wlo IADs

with IADs
/

Nozzles Exhaust Temperature

Figure 12.-Effectiveness of ingestion avoidance

devices in reducing inlet hot gas ingestion.
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Figure 13.- Near field ingestion avoidance devices (lADs).

Figure 13 shows the three primary configurations:

I. without IADs,

2. with IADs, option l: flow deflector and congitudinal streaks (2)

instal Ied,
3. with IADs, option 2: flow deflector and congitudinal _treaks

(2), aft fence and flow deflection sidewall (2) installed.

These configurations will be tested with the auxiliary inlets in the open

and closed positions.
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In addition to the near field, data applicable for determining the far
field ingestion effect will also be obtained.

Pressure/temperature rakes are located on the ground plane (forward and

aft of the model), figure 14. Also tufts will be located on the ground plane

to give an indication of the far field airflow movement. The ground plane

will contain static pressure and temperature taps. A thermo-vision system
will be utilized to detect the most forward point of the hot gas at the vari-
ous freestream speeds.

wlo IADs Configuration

/

Entrainment Separation caused by buoyancy

and entrainment of Induced Inflow.

Figure 14. - Far field ingestion.

In the next several figures we shall briefly review some of the instru-
mentation to be utilized during the test.

Figure 15 illustrates several of the rakes installed on the model. They
are as follows:

I. Nose boom rake which is used to measure the local freestream
conditions.

2. Inlet plane undersurface rake which is used to measure the quali-
ty of air entering the inlet region.

3. Fountain upwash rake will measure the upwash flow characteristics.

The rakes contain both total pressure and temperature measurements.
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Nozzle hot air supply

Inlet suction__\ i ; /'/ //

Figure 15. - Model 279-3 external instrumentation rakes.

In addition to rake instrumentation, static pressure taps and high re-

sponse thermocouples are located along the bottom and sides of the fuselage,

as can be seen in figure 16. Using the fuselage instrumentations, we should

have a good indication of the thermo-profiles along the fuselage.

Model'surface

high response

thermocoul

,i

0.062 in.

8urfacs_ X.._._

,.:::.':::o,.o
detail 0,062 In.

Casing ._,,_it"iJ-,_ Thermocouple

_" wires

Figure 16. - Typical fuselage instrumentation.
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Another major region of concern is the inlet. Vie need to know what

effects inlet temperature rise has on the fan face Mach number rise. Figure
17 shows what might be a typical plot of inlet temperature rise vs inlet fan

face Mach number. That is, the inlet temperature rise reaches a plateau at
some fan face Mach number. This particular curve is a function of the model
height above the ground plane.

Inlet

Temperature Rise
"-. f(h)

X

Inlet Fan Face Mech Number

,Figure 17. - Inlet fan face temperature rise.,

Typical model inlet and nozzle instrumentations are shown in figure 18.

The nozzles contain total pressure and temperatures probes. The engine fan

face rake will also contain 32 total pressures and temperature measurements.

To determine the severity of the hot gas ingestion, the inlet temperature rise

and contour maps will be obtained utilizing the fan face rake. A typical

contour map of a fan inlet instantaneous temperature profile is shown in
figure Ig.
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Engine Face Rake Nozzle

Porous Plate-_ _Pt

Pt___-i TIC

_--Stabilizer Ring _,_g .......

_xrThermocoup le ._. _ _ _ A

i _Total Pressure \\ __

) ) Probe, Pt _ "_

/ _Static Pressure/_ \\ _

Pt'-/ _

Section A.A

Figure 18. - Typical model inlet and nozzle instrumentations.

0o

zT0°t -@

Figure 19. - Contour map of the fan inlet temperature profiles.
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A t  the conclusion o f  the 9'x15' LSWT tes t ,  we w i l l  have pressure/tempera- 
t u r e  contour maps a t  the fan face f o r  var ious freestream v e l o c i t i e s  and model 
a t t i t udes .  Rut what we would l i k e  t o  ascer ta in  as an end i tem is the  e f f e c t  
the  ho t  gas ingest ion has on the actual  engine. 

We ant ic ipa te ,  as a fo l low-on program, us ing  both the pressure and temper- 
a tu re  d i s t o r t i o n  p r o f i l e s  from the 9 'x15'  LSWT program and implement these 
i n t o  a f u l l  scale engine program. Th is  f u l l  scale t e s t i n g  would es tab l i sh  the  
charac ter i  s t i c s  o f  the  engine sent i  ti v i  ty  due t o  the  temperature, pressure and 
a combination o f  temperature-pressure d i s t o r t i o n .  A t  NASA Lewis Research 
Center, we have an a l t i t u d e  t e s t  chamber (PSL) i n  which we do f u l l  s ize  engine 
tes t ing .  F igure  20 shows a view of the A l t i t u d e  l e s t  Chamber w i t h  a TF-34 
engine i n s t a l l e d .  This f a c i l i t y ' s  a l t i t u d e  s imulat ion range from sea l e v e l  t o  
l O O K  feet .  

F i g u r e  20. - TF-34 engine i ns ta l l ed  in the A l t i t u d e  T e s t  Chamber.  

i l l u s t r a t e s  the  extent  o f  t y p i c a l  engine instrumentat ion.  The 
n consisted o f  steady-state and dynamic t o t a l  pressures, s t a t i c  

pressures, and t o t a l  temperature measurements. 7-ransient t o t a l  temperature 
and h i  gh-response pressure data are a1 so recordes. 
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Instrumentation layout for the TF-34 turbofan engine.
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Figure 22. - Pressure distortion generator with rotatable screen 

as s em bly . 

Pressure and temperature distortions can be imposed on the fu l l  size en- 
gi ne by using pressure and temperature d i  storti on generators. In1 e t  pressure 
distortion (pressure lower t h a n  average) i s  generated using one o f  three 
screen configurations, figure 22. The pressure distortion circumferential 
extent o f  a 180"can be varied by a rotatable screen assembly which i s  mounted 
upstream o f  the  engine inlet, 
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The gaseous-hydrogen-fueled burzcr  device, f i g u r e  23, i s  used t o  produce the  
tirne-dependent temcerature d i  s to - t ion  and i s  i n s t a l l e d  upstream o f  the engine 
i n l e t  bellmouth. The burner has the c a p a b i l i t y  o f  being ro ta ted  + 300 from 
the  center  p o s i t i o n  and i s  div ided i n t o  fou r  i n d i v i d u a l l y  controTled quad- 
rants.  A i r  passing through the  burner i s  heated i n  selected 900 sectors. 
Each sector  has the  fo l lowing:  

1. 
2. 6 annular gu t te rs  supported by 1 r a d i a l  gut ter ,  
3. 6 c i rcu la r - tube manifolds ( 1  i ns ide  each annular gu t te r )  w i t h  

H i  gh-response valves could Se energized i n  any des i red combination t o  produce 
the temperature d i  s t o r t i  on. 

6 swir l -can p i l o t  burners, i g n i t i o n  source f o r  hydrogen. 

m a l l  holes f o r  hydrogen i n j e c t i o n .  

Figure 23. - T o t a l  temperature distortion genera tor  w i th  a 

g a s e o u s - h y d r o g e n - f u e l e d  burner.  
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By using the above distortion devices, we can arrive at the distortion

sensitivity parameters for the engine inlet as shown in figure 24. The engine
stall line is temperature and/or pressure distortion sensitive. This is ulti-

mately the type of information you need to know about the model-inlet-engine
characteristics.

Pressure

distortion

amplitude

Stall line

Solid symbols - stall

Open symbols - nonstall

__ Estimated stall line_. //j_._

Q

a_/St all line

Temperature distortion amplitude

Figure 24. - Distortion sensitivity at the engine inlet.

In conclusion:

I. We shall obtain data which will permit prediction of operating

characteristics of vectored thrust concepts with forward velocity.

2. We shall minimize/eliminate hot gas ingestion during vertical
flight operations while in ground effects.

3. We shall establish a data base for near and far field ingestion,

fountain flow effects, and ground vortex flow field- jet interaction.

4. We shall also obtain _istortion results which can be utilized for

full size engine testing in the altitude test chamber facility.
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5. We shall obtain the extent of ground effects on the vectored

thrust ASTOVL concept.

6. It is important to develop analytical codes which will predict

the overall effects of hot gas ingestion.
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